• http://Mr. Sachin Shingne 
  • Course Content
  • credit - 2
  • mode: online
  • Definition of Laplace Transform

    • L{f(t)}=0estf(t)dt\mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st}f(t) \, dt

    • Domain and convergence criteria

    • Piecewise continuity and exponential order conditions

  • Common Laplace Transforms

    • L{1}=1s\mathcal{L}\{1\} = \frac{1}{s}

    • L{tn}=n!sn+1\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}

    • L{eat}=1sa\mathcal{L}\{e^{at}\} = \frac{1}{s-a}

    • And others

  • Properties of Laplace Transform:

    • Linearity:

      L{af(t)+bg(t)}=aF(s)+bG(s)\mathcal{L}\{af(t) + bg(t)\} = aF(s) + bG(s)

    • First Shifting Theorem (Time Shift):

      L{eatf(t)}=F(sa)\mathcal{L}\{e^{at}f(t)\} = F(s-a)

    • Differentiation in Time Domain:

      L{f(t)}=sF(s)f(0)\mathcal{L}\{f'(t)\} = sF(s) - f(0)

    • Integration in Time Domain

    • Convolution Theorem